Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract The broad emission lines (BELs) emitted by active galactic nuclei respond to variations in the ionizing continuum emission from the accretion disk surrounding the central supermassive black hole (SMBH). This reverberation response provides insights into the structure and dynamics of the broad-line region (BLR). In 2024, we introduced a new forward-modeling tool, the Broad Emission Line Mapping Code (BELMAC), which simulates the velocity-resolved reverberation response of the BLR to an input light curve. In this work, we describe a new version of BELMAC, which uses photoionization models to calculate the cloud luminosities for selected BELs. We investigated the reverberation responses of Hα, Hβ, MgIIλ2800, and CIVλ1550 for models representing a disk-like BLR with Keplerian rotation, radiatively driven outflows, and inflows. The line responses generally provide a good indication of the respective luminosity-weighted radii. However, there are situations where the BLR exhibits a negative response to the driving continuum, causing overestimates of the luminosity-weighted radius. The virial mass derived from the models can differ dramatically from the actual SMBH mass, depending mainly on the disk inclination and velocity field. In single-zone models, the BELs exhibit similar responses and profile shapes; two-zone models, such as a Keplerian disk and a biconical outflow, can reproduce observed differences between high- and low-ionization lines. Radial flows produce asymmetric line profile shapes due to both anisotropic cloud emission and electron scattering in an intercloud medium. These competing attenuation effects complicate the interpretation of profile asymmetries.more » « lessFree, publicly-accessible full text available September 23, 2026
- 
            Free, publicly-accessible full text available February 28, 2026
- 
            Abstract The variable continuum emission of an active galactic nucleus (AGN) produces corresponding responses in the broad emission lines, which are modulated by light travel delays, and contain information on the physical properties, structure, and kinematics of the emitting gas region. The reverberation mapping technique, a time series analysis of the driving light curve and response, can recover some of this information, including the size and velocity field of the broad-line region (BLR). Here we introduce a new forward-modeling tool, the Broad Emission Line MApping Code, which simulates the velocity-resolved reverberation response of the BLR to any given input light curve by setting up a 3D ensemble of gas clouds for various specified geometries, velocity fields, and cloud properties. In this work, we present numerical approximations to the transfer function by simulating the velocity-resolved responses to a single continuum pulse for sets of models representing a spherical BLR with a radiatively driven outflow and a disklike BLR with Keplerian rotation. We explore how the structure, velocity field, and other BLR properties affect the transfer function. We calculate the response-weighted time delay (reverberation “lag”), which is considered to be a proxy for the luminosity-weighted radius of the BLR. We investigate the effects of anisotropic cloud emission and matter-bounded (completely ionized) clouds and find the response-weighted delay is only equivalent to the luminosity-weighted radius when clouds emit isotropically and are radiation-bounded (partially ionized). Otherwise, the luminosity-weighted radius can be overestimated by up to a factor of 2.more » « less
- 
            null (Ed.)The size and structure of the dusty circumnuclear torus in active galactic nuclei (AGNs) can be investigated by analyzing the temporal response of the torus's infrared (IR) dust emission to variations in the AGN ultraviolet/optical luminosity. This method, reverberation mapping, is applicable over a wide redshift range, but the IR response is sensitive to several poorly constrained variables relating to the dust distribution and its illumination, complicating the interpretation of measured reverberation lags. We have used an enhanced version of our torus reverberation mapping code (TORMAC) to conduct a comprehensive exploration of the torus response functions at selected wavelengths, for the standard interstellar medium grain composition. The shapes of the response functions vary widely over the parameter range covered by our models, with the largest variations occurring at shorter wavelengths (≤4.5 μm). The reverberation lag, quantified as the response-weighted delay (RWD), is most affected by the radial depth of the torus, the steepness of the radial cloud distribution, the degree of anisotropy of the AGN radiation field, and the volume filling factor. Nevertheless, we find that the RWD provides a reasonably robust estimate, to within a factor of ~3, of the luminosity-weighted torus radius, confirming the basic assumption underlying reverberation mapping. However, overall, the models predict radii at 2.2 μm that are typically a factor of ~2 larger than those derived from K-band reverberation mapping. This is likely an indication that the innermost region of the torus is populated by clouds dominated by large graphite grains.more » « less
- 
            Abstract The ability to direct cell behavior has been central to the success of numerous therapeutics to regenerate tissue or facilitate device integration. Biomaterial scientists are challenged to understand and modulate the interactions of biomaterials with biological systems in order to achieve effective tissue repair. One key area of research investigates the use of extracellular matrix‐derived ligands to target specific integrin interactions and induce cellular responses, such as increased cell migration, proliferation, and differentiation of mesenchymal stem cells. These integrin‐targeting proteins and peptides have been implemented in a variety of different polymeric scaffolds and devices to enhance tissue regeneration and integration. This review first presents an overview of integrin‐mediated cellular processes that have been identified in angiogenesis, wound healing, and bone regeneration. Then, research utilizing biomaterials are highlighted with integrin‐targeting motifs as a means to direct these cellular processes to enhance tissue regeneration. In addition to providing improved materials for tissue repair and device integration, these innovative biomaterials provide new tools to probe the complex processes of tissue remodeling in order to enhance the rational design of biomaterial scaffolds and guide tissue regeneration strategies.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
